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1 Two flywheels F and G are rotating freely, about the same axis and in the same direction, with
angular speeds 21 rad s−1 and 36 rad s−1 respectively. The flywheels come into contact briefly, and
immediately afterwards the angular speeds of F and G are 28 rad s−1 and 34 rad s−1, respectively, in
the same direction. Given that the moment of inertia of F about the axis is 1.5 kg m2, find the moment
of inertia of G about the axis. [4]

2 A rotating turntable is slowing down with constant angular deceleration. It makes 16 revolutions as
its angular speed decreases from 8 rad s−1 to rest.

(i) Find the angular deceleration of the turntable. [2]

(ii) Find the angular speed of the turntable at the start of its last complete revolution before coming
to rest. [2]

(iii) Find the time taken for the turntable to make its last complete revolution before coming to rest.
[2]

3 The region bounded by the curve y = 2x + x2 for 0 ≤ x ≤ 3, the x-axis, and the line x = 3, is occupied
by a uniform lamina. Find the coordinates of the centre of mass of this lamina. [9]

4
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A boat A is travelling with constant speed 6.3 m s−1 on a course with bearing 075◦. Boat B is travelling
with constant speed 10 m s−1 on a course with bearing 025◦. At one instant, A is 2500 m due north
of B (see diagram).

(i) Find the magnitude and bearing of the velocity of A relative to B. [5]

(ii) Find the shortest distance between A and B in the subsequent motion. [3]
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5 The region bounded by the curve y = √
ax for a ≤ x ≤ 4a (where a is a positive constant), the x-axis,

and the lines x = a and x = 4a, is rotated through 2π radians about the x-axis to form a uniform solid
of revolution of mass m.

(i) Show that the moment of inertia of this solid about the x-axis is 7
5
ma2. [8]

The solid is free to rotate about a fixed horizontal axis along the line y = a, and makes small oscillations
as a compound pendulum.

(ii) Find, in terms of a and g, the approximate period of these small oscillations. [4]

6
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A uniform rectangular lamina ABCD has mass m and sides AB = 2a and BC = 3a. The mid-point of
AB is P and the mid-point of CD is Q. The lamina is rotating freely in a vertical plane about a fixed
horizontal axis which is perpendicular to the lamina and passes through the point X on PQ where

PX = a. Air resistance may be neglected. When Q is vertically above X, the angular speed is

√
9g

10a
.

When XQ makes an angle θ with the upward vertical, the angular speed is ω , and the force acting on
the lamina at X has components R parallel to PQ and S parallel to BA (see diagram).

(i) Show that the moment of inertia of the lamina about the axis through X is 4
3
ma2. [3]

(ii) At an instant when cos θ = 3
5
, show that ω2 = 6g

5a
. [3]

(iii) At an instant when cos θ = 3
5
, show that R = 0, and given also that sin θ = 4

5
find S in terms of m

and g. [9]
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Particles P and Q, with masses 3m and 2m respectively, are connected by a light inextensible string
passing over a smooth light pulley. The particle P is connected to the floor by a light spring S1 with
natural length a and modulus of elasticity mg. The particle Q is connected to the floor by a light spring
S2 with natural length a and modulus of elasticity 2mg. The sections of the string not in contact with
the pulley, and the two springs, are vertical. Air resistance may be neglected. The particles P and Q
move vertically and the string remains taut; when the length of S1 is x, the length of S2 is (3a − x) (see
diagram).

(i) Find the total potential energy of the system (taking the floor as the reference level for gravitational
potential energy). Hence show that x = 4

3
a is a position of stable equilibrium. [9]

(ii) By differentiating the energy equation, and substituting x = 4
3
a + y, show that the motion is simple

harmonic, and find the period. [9]
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1 By conservation of angular momentum 
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Definite integrals may be evaluated by 
calculator (i.e with no working shown) 
 
 
 
 
 
 
 
Integrating and evaluating 
  (dependent on previous M1) 
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Arranging in integrable form 
  
Integrating and evaluating 
SR  If  ½  is missing, then M0M1M1A0 
      can be earned for y  
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Correct velocity triangle 
 
 
 
 
 
 
 
 
 
 
 
 
This mark cannot be earned from work 
done in part (ii) 

 
OR  M1A1

6.3sin 75 10sin 25 1.859
6.3cos 75 10cos 25 7.433
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− = °

  
 
 
Finding magnitude or direction 

   (ii) As viewed from B 
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Diagram showing path of A as viewed 
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SR  If 89β = °  is used, give A1 for 
       684.9 to 689.1 

 

 39



4731 Mark Scheme June 2008 

 
 5 (i) 4

42 3151
2 2

( )d
a

a
a

a

V a x x

a x a

π

π π

=

⎡ ⎤= =⎣ ⎦

⌠
⎮
⌡  

Hence 315
2m aπ ρ=  

 
2 2 41 1

2 2
4

2 21
2

42 3 51 21
6 2

3 2 27 15 7
5 2 5

( )

d

( )

a

a
a

a

dI y x y y x

a x x

a x a

a a ma

ρπ δ ρπ

ρπ

ρπ ρπ

π ρ

= =

=

⎡ ⎤= =⎣ ⎦

= =

⌠
⎮
⌡

∑ ∫

 

 
M1 
 
 
M1 
 
M1 
M1 
A1 
  
A1 ft 
 
 
A1 
 
A1 (ag) 
 8

 
(Omission of  is an accuracy error) π
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Equation involving KE and PE 
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Acceleration  and three terms 2rω
    (one term must be R ) 
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Can be awarded for terms listed 
separately 
 
 
 

Obtaining d
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(or any multiple of this) 
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Differentiating the energy equation 
   (with respect to t or x) 
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